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Neuroinflammation in psychiatric disorders: PET imaging 
and promising new targets
Jeffrey H Meyer, Simon Cervenka, Min-Jeong Kim, William C Kreisl, Ioline D Henter, Robert B Innis

Neuroinflammation is a multifaceted physiological and pathophysiological response of the brain to injury and disease. 
Given imaging findings of 18 kDa translocator protein (TSPO) and the development of radioligands for other 
inflammatory targets, PET imaging of neuroinflammation is at a particularly promising stage. This Review critically 
evaluates PET imaging results of inflammation in psychiatric disorders, including major depressive disorder, 
schizophrenia and psychosis disorders, substance use, and obsessive-compulsive disorder. We also consider 
promising new targets that can be measured in the brain, such as monoamine oxidase B, cyclooxygenase-1 and 
cyclooxygenase-2, colony stimulating factor 1 receptor, and the purinergic P2X7 receptor. Thus far, the most 
compelling TSPO imaging results have arguably been found in major depressive disorder, for which consistent 
increases have been observed, and in schizophrenia and psychosis, for which patients show reduced TSPO levels. 
This pattern highlights the importance of validating brain biomarkers of neuroinflammation for each condition 
separately before moving on to patient stratification and treatment monitoring trials.

Introduction
PET imaging of neuroinflammation was applied first in 
neurological disorders and later in psychiatric disorders. 
In this context, neurological disorders, in which inflam
mation is an established pathological contributor, are 
ideal positive controls for assessing whether a new 
biomarker probe works in the human brain. For example, 
testing 18 kDa translocator protein (TSPO) as a biomarker 
of neuroinflammation in neurological disorders yielded 
promising results for Alzheimer’s disease, which justified 
the extension of this probe to psychiatric disorders. 
Nevertheless, such an extension is associated with many 
hurdles.

Psychiatric disorders (eg, major depressive disorder 
and schizophrenia) are more heterogeneous than most 
neurological illnesses; that is, biological measurements 
of pathologies sampled from patients with specific 
diagnoses never completely separate from those of 
healthy controls and, because symptoms overlap across 
diagnoses, phenotypes are often shared. Moreover, large 
variability exists in the course of illness, in response to 
treatments, and, quite importantly, in the heterogeneous 
group of associated genetic polymorphisms. These 
factors probably explain why, to date, no biomarker has 
been found to fully separate individual patients with 
specific psychiatric diagnoses from healthy controls. In 
order to detect a significant difference in the mean of a 
phenotype measure—in this case, neuroinflammation—
in moderately sized samples, the phenotype should be 
substantially different and reasonably common in the 
entire population with the disease. One advantage for 
such markers of more moderate effect sizes is that the 
prevalence of associated pathology is sufficient for these 
markers to stratify patients—in this case, as having high 
or low neuroinflammation—for subsequent studies or 
treatments. For instance, elevated TSPO binding has 
been observed in six of seven studies of unmedicated 
patients with major depressive disorder. By implication, 
antiinflammatory treatments in patients with this 

disorder should preferentially improve symptoms in 
those patients with PET measures of inflammation at 
baseline. As will be described in this Review, a study 
found that elevated TSPO in unmedicated patients with 
major depressive disorder predicted response to 
celecoxib, a nonsteroidal antiinflammatory drug and 
selective inhibitor of cyclooxygenase (COX)2.1

Regardless of the advantages or disadvantages of TSPO 
as a biomarker, additional biomarkers of neuroinflam
mation are needed to reflect the wide range of proinflam
matory and antiinflammatory responses that occur in the 
brain. This Review will critically evaluate PET imaging 
results of inflammation in psychiatric disorders, including 
major depressive disorder, schizophrenia and psychosis, 
and obsessivecompulsive disorder, as well as in studies of 
substance use. These illnesses were chosen because they 
are common major diseases in which quantitative studies 
have been completed with reasonably highquality 
radioligands. The Review will also assess several promi
sing novel PET radioligands of neuro inflammation, 
including those for COX1, COX2, mono amine oxidase B 
(MAOB), colony stimulating factor 1 receptor (CSF1R), 
and the purinergic P2X7 receptor (P2X7R; table 1).

PET imaging of a biomarker
The most common clinical use of PET is for oncology, in 
which many tumours and their metastases have a high 
glycolytic rate, identified by uptake and trapping of a 
radiolabelled analogue of glucose, such as [¹⁸F]fluoro
deoxyglucose (FDG). Because the underlying process (ie, 
energy metabolism) has numerous deter minants, 
increased uptake might not have a single interpretation. 
For example, increased FDG uptake can reflect brain 
tumours and surrounding inflammation, making it 
difficult to establish whether elevated FDG uptake after 
an intervention signifies recurrent cancer or merely 
neuroinflam mation. Despite this limitation, FDG PET 
has had unexpected sensitivity and specificity to aid in 
the diagnosis of Alzheimer’s disease, shown as bilaterally 
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decreased metabolism in temporal and parietal lobes. In 
fact, the sensitivity and specificity for Alzheimer’s disease 
of this nonspecific marker of glucose metabolism 
compares favourably with specific PET imaging of 
amyloid. In this case, decreased FDG uptake is likely to 
be driven primarily by loss of neurons and their 
associated synapses. However, selective biomarkers of 
the inflammatory cascade could provide insights that are 
more relevant for treatment. Of crucial relevance to this 
Review, most protein targets, including those for 
neuroinflammation, are present at a concen tration of 
less than 10–⁸ M, and PET is the only technique with 
adequate sensitivity to measure them in vivo.

TSPO: the most commonly imaged biomarker of 
neuroinflammation
As is the case with many glial cell markers, the 
interpretation of TSPO is complex and discussed in more 
detail in a companion article in The Lancet Neurology.2 In 
rodents, TSPO binding is strongly related to the 
magnitude of expression of TSPO in activated microglia 
in studies of lipopolysaccharide administration, toxin, and 
stroke.9,10 However, TSPO is expressed in both activated 
microglia and astroglia in human postmortem studies of 
neuro psychiatric illnesses such as Alzheimer’s disease, 
HIV encephalitis, multiple sclerosis, amyotrophic lateral 
sclerosis, frontotemporal dementia, and stroke. Moreover, 
TSPO appears to be expressed to some extent in glia 
before their activation,11 which could reflect a role for 
TSPO in the transition to gliosis, given reports that gliosis 
can be prevented by administering TSPObinding 
medications.12–14 Different types of inflammatory cells 
might also adopt common signalling pathways across 
similar functional states with heightened protein 
expression, and peripheral inflammatory cells, such as 
macrophages, might express detectable concentrations of 
TSPO when in an inflam matory state.15,16 In healthy 

animals and humans, TSPO is also found in vascular 
endothelium and in undiffer entiated neurons of the 
hippocampus.11,17 Finally, like other markers associated 
with gliosis, TSPO typically labels a proportion of activated 
microglia and astrocytes but not all of them. Taken 
together, these findings suggest that most TSPO signals 
in the brain are attributable to the presence of this protein 
in microglia, astroglia, and endothelial cells, and that the 
increase in TSPO binding in neuro psychiatric disease 
typically results from the increased activation and 
proliferation of TSPOpositive microglia and astroglia 
(and rarely macrophages) that occurs during gliosis.17

Assessing TSPO expression (as in the context of gliosis) 
is not synonymous with identifying the range of functions 
that TSPO might influence. For instance, even though 
some TSPObinding medications are associated with 
antiinflammatory responses,12–14 other TSPObinding 
medications or complete knockout of the protein might 
influence cell metabolism and predisposition towards 
apoptosis.18,19 An additional complication in interpreting 
TSPO expression is the potential for differences across 
species. One study that primarily examined TSPO mRNA 
expression in vitro found differences in the propensity for 
microglial activation in cells sampled from humans with 
epilepsy and human fetuses versus cells sampled from 
mouse pups.20

Apart from TSPO’s biological properties, another 
important factor is the type of radioligand used. The first 
TSPO PET radioligand, [¹¹C](R)PK11195, has a low signal
tonoise ratio (SNR); as a result, a substantial number of 
secondgeneration radioligands were developed several 
years ago.21 Compared with [¹¹C](R)PK11195, they all offer 
a superior SNR and, in a headtohead comparison, the 
binding potential—a measure of SNR—was ten times 
greater in [¹¹C]DPA713 than in [¹¹C](R)PK11195.22 Notably, 
however, a common single nucleotide polymorphism 
(rs6971) in the gene for TSPO alters the binding affinity of 

Radioligand Cell distribution Function Brain radiometabolites Animal model Human use

TSPO2 Several Microglia; astrocytes; 
vascular endothelium

Unclear, possibly steroid 
synthesis

Variable, could be least 
problematic for [¹¹C]ER176

Typically lipopolysaccharide Psychiatric and 
neurological disorders

MAO-B3,4 [¹¹C]SL25.1188 Astrocytes; 
serotonin-releasing 
neurons

Metabolism of non-serotonergic 
monoamines; hydrogen 
peroxide signalling

None Overexpression transgenic mouse Neuropsychiatric 
disorders

COX-15 [¹¹C]PS13 Microglia (primarily) Prostanoid synthesis None Lipopolysaccharide Healthy volunteers

COX-26 [¹¹ C]MC1 Microglia; neurons Prostanoid synthesis None None Rheumatoid arthritis; 
healthy volunteers

CSF1R7 [¹¹C]CPPC Microglia (exclusively) Regulation of mononuclear 
phagocytes

None Lipopolysaccharide in rodents and 
non-human primates; transgenic mouse 
models of Alzheimer’s disease; rodent EAE 
model of multiple sclerosis

Alzheimer’s disease 
(post mortem)

P2X7R8 [¹¹C]JNJ-54173717; 
[¹⁸F]JNJ-64413739; 
[¹¹C]SMW139

Microglia (primarily); 
oligodendrocytes; 
astrocytes

Inflammatory cytokine release None Lipopolysaccharide Parkinson’s disease; 
multiple sclerosis; 
healthy volunteers

COX=cyclooxygenase. CSF1R=colony stimulating factor 1 receptor. EAE=experimental autoimmune encephalomyelitis. MAO-B=monoamine oxidase B. P2X7R=purinergic P2X7 receptor. TSPO=18 kDa 
translocator protein.

Table 1: Neuroinflammatory targets with promising PET radioligands
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all secondgeneration radioligands studied to date, with no 
apparent effect on CNS diseases.23 Secondgeneration 
radioligands bind to TSPO with lower affinity in individuals 
with two copies of the rare allele for rs6971 than in 
individuals with two copies of the major allele, and 
heterozygotes express both alleles in approximately equal 
proportions in a codominant manner. Two indi viduals 
with the same TSPO density but different genotypes will 
thus produce a different PET signal; genotype should 
therefore be considered in study design or analysis. With 
some radioligands (eg, [¹¹C]PBR28), the affinity shift is so 
profound that homozygous lowaffinity binders do not 
produce a measurable signal,24 and these participants 
should therefore be excluded before imaging with 
this ligand. However, one newer radioligand, [¹¹C]ER176, 
has a smaller affinity shift, such that homozygous low
affinity binders produce a signal that can be accurately 
quantified.22,25 Finally, for some PET radioligands, binding 
in the brain might be substantially influenced by free 
fraction, as reported for [¹¹C]PBR28.26 Another study that 
used [¹¹C]PBR28 in major depressive disorder also applied 
free fraction as a correction,27 whereas other studies 
measured it across the groups compared.1

TSPO imaging
Major depressive disorder
Studies of peripheral inflammatory biomarkers, such as 
Creactive protein (CRP), tumour necrosis factor α 

(TNFα), and interleukin6 (IL6), have typically reported 
either increases or no change in individuals with major 
depressive disorder. Metaanalyses of cerebrospinal fluid 
measures have shown increased concentrations of IL6 
and TNFα in major depressive disorder.28,29 Given the 
evidence of peripheral inflammation in major depressive 
disorder, the question remained whether central 
inflammation was also present. Six of seven PET studies 
have reported elevated TSPO binding in participants 
with major depressive disorder during a major depres
sive episode (MDE), which is an unusually robust degree 
of replicability for studies in psychiatry or PET studies 
(table 2).27,31–35 That is, studies at four different sites 
totalling 142 patients and 93 controls found that TSPO 
binding was increased by 15–67% in the anterior 
cingulate cortex and by 25–35% in the prefrontal 
cortex.27,31–35 Three of these studies used secondgeneration 
TSPO radiotracers to measure distribution volume (VT), 
and, although [¹¹C](R)PK11195 is a much less sensitive 
firstgeneration radio tracer,36 the one study that applied it 
(to measure nondisplaceable binding potential) was in 
accord with the other studies. Findings within individual 
studies were evident in all grey matter regions sampled. 
An additional [¹¹C]PBR28 study that combined four 
participants experiencing an MDE and five partiallyto
fully remitted participants with major depressive disorder 
reported a negative result.30 However, it is possible that 
illness state is associated with TSPO VT, as one 

Diagnosis (n)* Treatment status Brain region Main result

Major depressive 
disorder

Healthy 
controls

Hannestad et al (2013)30 9 10 8 unmedicated, 
1 medicated

Frontal cortex; eight grey 
matter regions; centrum 
semiovale

Not significant

Setiawan et al (2015)31 20 20 All medication-free PFC; ACC; insula; 14 grey 
matter regions

26–32% elevated during MDE

Setiawan et al (2018)32 50 
(30 new†)

30 
(10 new†)

30 medicated, 
treatment-resistant; 
20 medication-free

PFC; ACC; insula; 14 grey 
matter regions

About 15–23% elevated during 
MDE; about 29–42% elevated in 
untreated major depressive 
disorder for more than 10 years

Richards et al (2018)27 28 20 12 medication-free; 
16 medicated

sgPFC; ACC About 25% elevated in sgPFC; 
about 15% elevated in ACC

Holmes et al (2018)33 14 13 No antidepressant or 
anti-inflammatory 
medications

PFC; ACC; insula 67% elevated in ACC; 28% elevated 
in PFC‡; 24% elevated in insula‡

Li et al (2018)34 40 20 Medication-naive Frontal cortex; temporal 
cortex; hippocampus; whole 
grey and white matter

About 25–35% elevated during 
MDE

Li et al (2018)35 50 
(10 new†)

30 
(10 new†)

Medication-naive Frontotemporal cortex; 
hippocampus; grey and 
white matter

About 25% elevated during MDE

All studies with quantitative results, statistical analyses, and that specified medication status of the participants were included. All studies used a second-generation 
radiotracer (either [¹⁸F]FEPPA or [¹¹C]PBR28) except the study by Holmes and colleagues,33 which used [¹¹C]-(R)-PK11195. ACC=anterior cingulate cortex. MDE=major 
depressive episode. PFC=prefrontal cortex. sgPFC=subgenual prefrontal cortex. TSPO=18 kDa translocator protein. *All participants with major depressive disorder were 
studied during an MDE except for the study by Hannestad and colleagues,30 in which four of nine participants were experiencing an MDE. †New participants not included in 
other studies listed in this table. ‡Results were not statistically significant.

Table 2: TSPO results in major depressive disorder by study



4 www.thelancet.com/psychiatry   Published online October 21, 2020    https://doi.org/10.1016/S2215-0366(20)30255-8

Review

longitudinal followup study found acute reduc tions in 
symptoms that were associated with reductions in TSPO 
VT across the grey matter regions sampled.34

Several observations related to clinical characteristics 
were noted in the crosssectional data. For instance, 
across a sample of 50 individuals experiencing MDEs, 
greater TSPO VT was observed in those with longer 
duration of untreated illness, a finding consistent with 
the observation that gliosis, which includes activation 
and proliferation of microglia and astroglia, is associated 
with disease progression in many progressive neuro
psychiatric diseases.32 The novelty is the evidence for 
neuroprogression (ie, pathological reorgan isation of the 
brain during the course of illness) in major depressive 
disorder, which previously had been scarce, even though 
many individuals with major depressive disorder show 
clinical evidence of disease worsening with greater 
frequency and persistence of MDEs than in the early 
stages of disease. The second observation, drawn from a 
study that compared 12 medicated with 16 unmedicated 
patients with major depressive disorder, was that TSPO 
VT was lower in patients receiving ongoing antidepressant 
treatment than in unmedicated patients.27 This obser
vation is consistent with invitro studies indicating that 
SSRIs suppress lipopolysaccharideinduced micro glial 
activation.37

The consistent findings of increased TSPO binding 
during MDEs, particularly for MDEs in unmedicated 
patients or in patients with a long history of untreated 
major depressive disorder, warrant further study in 
larger samples, especially with regard to predicting short
term and longterm outcomes. One approach for 
stratifying cases in clinical trials would be to apply 
surrogate biomarkers predictive of TSPO VT, some of 
which have been identified, in individuals experiencing 
an MDE. For example, in a sample that examined 

three cohorts (two of whom were experiencing MDEs), 
ln(prostaglandin E2/CRP) and ln(TNFα/CRP) consis
tently correlated with TSPO VT and had sufficient positive 
predictive value to be considered for use in clinical trials 
(figure 1).38 In addition, a study of 41 participants 
experiencing MDEs found that higher TSPO VT predicted 
greater reductions in symp toms after administration of 
celecoxib.1 This approach exemplifies stratification with a 
neuroinflam mationrelated PET marker in mood 
disorders, which is novel within the mood disorders 
field, but could also hold promise in other neuro
psychiatric diseases for which increases in TSPO have 
been observed, such as Alzheimer’s disease.

Schizophrenia and psychosis
Among the psychiatric disorders, individuals with 
schizophrenia and psychosis have been the most 
frequently studied with TSPO PET. Studies using second
generation TSPO radioligands and VT as an outcome 
found no difference between patients with firstepisode, 
recentonset, and chronic schizophrenia and psychosis,39–42 
although one [¹¹C]PBR28 study found lower VT in drug
naive patients with firstepisode psychosis than in healthy 
controls.43 Another [¹¹C]PBR28 study reported higher 
TSPO concentrations in individuals with chronic schizo
phrenia and individuals at high risk for psychosis than in 
healthy controls; however, the outcomes were calculated 
as marginal means derived from a statistical model con
trolling for binding in the whole brain, whereas VT values 
in grey matter regions were numerically lower in patients 
than in healthy controls.44 Notably, despite the high SNR, 
the average power to detect a medium effect size in the 
first five published studies using secondgeneration TSPO 
radioligands was 23–34% (sample size 12–19 patients).45 
Combining data from these studies in a metaanalysis of 
individual participant data yielded strong evidence (effect 
size 0·47–0·63) in favour of lower TSPO density in 
patients with these disorders than in controls, in all 
regions studied.45 No effect was observed for medication 
status, disease duration, or symptom severity. A sub
sequent metaanalysis of summary statistics reported 
unchanged TSPO binding for secondgeneration radio
ligands and higher binding using [¹¹C](R)PK11195 than 
in controls.36 One possible explanation for the discrepancy 
is that metaanalyses of individual participant data allow 
for more accurate estimation of the underlying effect 
size than do traditional metaanalyses.45 In addition, 
[¹¹C](R)PK11195 studies have low SNR, related both to 
the tracer36 (see discussion in the companion article in 
The Lancet Neurology2) and to the quantification methods 
used.46 A replication of the metaanalysis of individual 
participant data that added two new study samples (n=208) 
substantiated this finding of lower TSPO levels in patients 
than in controls (figure 2).47

Taken together, the evidence suggests lower TSPO 
concentrations in patients with schizophrenia and 
psychosis than in healthy controls. Because of the high 

Apply TSPO PET or surrogate 
serum predictors of TSPO binding  

Increased gliosis, increased response

Decreased  gliosis, decreased
response

Stratify patients
with MDEs

PET Surrogate
serum

Extent of TSPO binding
in PFC and ACC

Trial of inflammatory-modulating
medication

Low
gliosis

High 
gliosis
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eq
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Figure 1: Stratification of patients using TSPO imaging for putative anti-inflammatory treatments
To stratify patients during the development of candidate antidepressants that modulate neuroinflammation, 
the methods that can be applied are either PET imaging to establish TSPO distribution volume in regions 
participating in mood regulation, such as the PFC or ACC, or low-cost surrogate serum markers. The graph 
represents the frequency of cases for different levels of TSPO binding. In contrast to cases with low TSPO binding 
(green), cases with high TSPO binding (red) are more likely to have gliosis and would be anticipated to have greater 
reduction in symptoms after anti-inflammatory medication, as shown in a recent open trial of celecoxib.1 Examples 
of surrogate serum markers could include ln(prostaglandin E2/CRP) and ln(TNFα/CRP), which were shown to be 
predictive of TSPO VT in the PFC and ACC in individuals experiencing MDEs.38 ACC=anterior cingulate cortex. 
MDE=major depressive episode. PFC=prefrontal cortex. TSPO=18 kDa translocator protein. VT= distribution volume.
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variability of TSPO PET measurements,48,49 this moderate 
effect size was not detected in most individual studies, 
causing an apparent discre pancy. Although these 
findings do not rule out TSPOindependent mechanisms 
of neuroinflammation in schizophrenia, further studies 
using nonTSPO bio markers are needed to understand 
the biological underpinnings of these observations and 
their relevance for treatment.

Substance use
Animal studies have found that microglia and the 
immune system are involved in the neurotoxic effects 
of alcohol and psychostimulants, prompting investi
gations of TSPO concentrations in individuals with 
substance use disorders. An initial small study that used 
[¹¹C](R)PK11195 to examine methamphetamine users 
and healthy controls found a severaltimes increase in 
binding in metha mphetamine users.50 However, the 
outcome measure (nondisplaceable binding potential) 
was calculated with activity in cortical regions from the 
control group as the reference input, which means that 
differences in delivery of radioligand to the brain and 
nonspecific binding could not be controlled for. 
A subsequent study that used [¹¹C]PBR28 to measure 
TSPO investigated 15 individuals with DSMIV cocaine 
dependence and 17 controls and found no difference 
between the groups.51

[¹¹C]PBR28 has been used in two studies examining 
alcohol dependence. One study examined nine indivi
duals in a withdrawal state and 20 controls and found 
signifi cantly lower hippocampal VT in the patients than 
in the controls.52 In another study, 15 partici pants who 
had recently undergone detoxification were compared 
with 15 controls.53 Again, contrary to the initial hypo
thesis, decreases in VT in the detoxified patients were 
observed in hippocampus, striatum, frontal cortex, and 
cerebellum; furthermore, a negative asso ciation was 
observed between TSPO concentration and reported 
drinks per day, and the PET data were paralleled 
by reduced cytokine expression in cultured monocytes 
after lipopolysaccharide stimu lation in a subgroup of 
participants. The findings suggest that immune dysregu
lation could be part of the abstinence phase in alcohol 
use disorder, although the underlying mechanisms 
remain unknown.

Following experimental data showing that the 
cannabinoid system can modulate immune response, an 
[¹⁸F]FEPPA PET study examined 24 chronic cannabis 
users and 27 controls.54 TSPO VT was higher across all 
regions examined a priori in the cannabis users than in 
the controls, with even more prominent effects for the 
subgroup of users who met criteria for cannabis use 
disorder. TSPO concentration was positively correlated 
with blood CRP concentration and subjective measures 
of stress and anxiety. The magnitude of the difference 
between controls and users was robust (24–31%), 
justifying replication attempts.

Despite this evidence, the scarce data available on 
TSPO in substance use precludes our ability to make any 
conclusions regarding similarities across drugs.

Obsessive-compulsive disorder
Autoimmune mechanisms have been proposed for 
obsessivecompulsive disorder for several reasons. These 
reasons include an increased prevalence of obsessive
compulsive disorder in individuals with autoimmune 
disorders (eg, systemic lupus erythematosus and multiple 
sclerosis)55,56 and caseseries observations of obsessive
compulsive disorder following particular types of infection 
in children, known as paediatric autoimmune neuro
psychiatric disorder associated with group A βhaemolytic 
streptococcus or paediatric acute neuropsychiatric syn
drome.57 These infections are thought to account for a 
small subset of patients with obsessivecompulsive 
disorder. However, the underlying mechanism is well 
detailed as it includes the autoimmune mechanism of 
Sydenham’s chorea, and Sydenham’s chorea itself could 
occur in paediatric autoimmune neuropsychiatric disorder 
asso ciated with group A βhaemolytic streptococcus and 
paediatric acute neuropsychiatric syndrome.57 In paediatric 
autoimmune neuropsychiatric disorder associated with 
group A βhaemolytic streptococcus, Sydenham’s chorea is 
attributed to crossreactivity between gangliosides in basal
ganglia neurons and group A βhaemolytic streptococcus.58

Although the autoimmune theory of obsessive
compulsive disorder has been largely restricted to the basal 

Figure 2: Standardised differences in total VT between patients with psychosis and healthy controls
TSPO VT values of all individual patients with psychosis and healthy controls. A linear mixed-effects model, 
with varying intercepts and slopes for all included studies with genotype as covariate, yielded effect sizes of –0·41 
(p=0·0022) for the frontal cortex, –0·38 (p=0·048) for the temporal cortex, and –0·53 (p=0·0001) for the 
hippocampus. The data have been standardised within genotype and study, with a mean of 0 and SD of 1, to allow 
for visualisation of compiled data obtained with different radioligands. Controls=healthy controls. 
Patients=patients with psychosis. TSPO=18 kDa translocator protein. VT=distribution volume.
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ganglia, abnormalities of corticostriatothalamocortical 
circuits are implicated in obsessivecompulsive disorder, 
on the basis of human neurochemical imaging studies 
(5HT2A, 5HTT, 5HT1B, and mGluR5 receptor binding, 
and FDG uptake). Neuroinflammatory patho logies of this 
circuit, inclu ding vascular disease, tumours, Huntington’s 
disease, Tourette’s disorder, and Sydenham’s chorea, are 

associated with disturbances of similar complex motor 
behaviours.59 An [¹⁸F]FEPPA PET study found 30–36% 
greater TSPO VT within the dorsal caudate, orbitofrontal 
cortex, thalamus, ventral striatum, and dorsal putamen of 
20 participants with obsessivecompulsive disorder than in 
the same areas of matched healthy controls, with lower 
TSPO elevations observed in other grey matter regions 
sampled.59 The substantive magnitude of the difference 
between patients and controls suggests that aberrant 
inflammatory processes might be relevant in adult 
obsessivecompulsive disorder and not just for a subset of 
children with the disorder. The magnitude of the difference 
also raises the clinical question of whether interventions 
that inhibit or modulate some of the downstream effects of 
gliosis might have therapeutic effects in a subpopulation 
of adults with obsessivecompulsive disorder with higher 
than average TSPO VT (figure 1).

Promising new targets
MAO-B
MAOB, an enzyme comprising 520 amino acids, is 
mainly located on the outer mitochondrial membranes 
within astrocytes and serotoninreleasing neurons. 
During astrogliosis, increased MAOB expression is 
asso ciated with similarly greater expression of the 
astrogliosis marker glial fibrillary acidic protein (GFAP), 
as seen in neuropsychiatric illnesses such as Alzheimer’s 
disease, amyotrophic lateral sclerosis, multisystem 
atrophy, and progressive supranuclear palsy.60–62 MAOB 
is an attractive therapeutic target, given that it generates 
prooxidative effects by producing hydrogen peroxide 
and metabolises monoamines such as dopamine, 
norepinephrine, benzylamine, and phenylethylamine.63–65 
The first PET radiotracer series for this target was [¹¹C]
deprenyl and related analogues,66 but poor reversibility 
and the presence of the radioactive metabolites in the 
brain and periphery67,68 prompted development of the 
highly reversible and selective radioligand [¹¹C]SL25.1188, 
which has no brainpenetrant metabolites.69

MAOB binding, expressed as λk3, was shown to be 
reduced by 40% in cigarette smokers throughout grey 
matter regions when compared with nonsmokers, 
whereas MAOB VT in the prefrontal cortex was increased 
by 26% during MDEs.3,70 The underlying mechanism is 
thought to involve occupancy by βcarbolines, which 
reduce MAOB binding.71,72 In addition, in individuals 
with major depressive disorder, high MAOB concen
trations throughout grey matter regions were associated 
with long duration of illness, consistent with a post
mortem study that found similar agerelated increases 
in GFAP concentration in the orbitofrontal cortex.73 
Collectively, these findings suggest that greater gliosis is 
associated with longer duration of illness with major 
depressive disorder, which further supports the concept 
of neuroprogression. Future studies with [¹¹C]SL25.1188 
should assess its use as a predictor of response, parti
cularly to MAOBinhibitor therapeutics in major 
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Figure 3: Constitutive expression of COX-1 in healthy human brain
Parametric total VT images of [¹¹C]PS13, a selective radioligand for COX-1, 
in healthy humans. MRI scans are from a representative participant, and PET 
images are averaged from 20 scans in ten participants. The third row depicts 
fusion images created from MRI and PET. Arrows represent notable [¹¹C]PS13 
binding in the pericentral cortex, occipital cortex, and hippocampus. Reproduced 
from Kim et al.84 COX-1=cyclooxygenase-1. VT= distribution volume.

Figure 4: Inflammation-induced upregulation of COX-2
[¹¹C]MC1 PET images showing COX-2 binding in a monkey brain with lipopolysaccharide-induced 
neuroinflammation (A), and in hands of patients with rheumatoid arthritis and healthy controls (B). 
(A) Parametric VT images are shown before lipopolysaccharide injection (top row), on day 1 after a repeated 
lipopolysaccharide injection (middle row), and after blockade by cold MC1 (1 mg/kg intravenously; bottom row). 
Orthogonal crosshairs show the injected putamen. [¹¹C]MC1 uptake was markedly increased near the injection site 
after lipopolysaccharide injection. Cold MC1 blocked radioligand binding to COX-2 to a lower extent near the 
injection site than in the remainder of brain. Because this dose of MC1 achieved almost complete blockade (ie, 
75%), the residual uptake closely reflected VND. Thus, VND in the area of the lesion was reduced to less than that of 
normal brain, which was caused by a delayed haemorrhage between the repeated lipopolysaccharide injections. 
(B) Increased [¹¹C]MC1 uptake in the bilateral hand joints (marked by arrows) reflected increased COX-2 binding in 
a patient with rheumatoid arthritis compared with a healthy control. The increased uptake in the patient was 
partially blocked (ie, the uptake was not reduced to that in controls) by celecoxib (400 mg orally, administered 2 h 
before the blocked scan). Adapted from Shrestha et al.6 COX-2=cyclooxygenase-2. LPS=lipopolysaccharide. 
VND=non-displaceable distribution volume. VT=distribution volume.
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depressive disorder (eg, phenelzine, tranylcypromine, or 
selegiline transdermal patch).

COX-1 and COX-2
COX1 is generally thought to be constitutively expressed 
in almost all tissues, whereas COX2 has low basal 
expression that increases rapidly in response to inflam
mation. This rapid increase over a few hours—with a 
similarly rapid return to baseline expression—suggests 
that COX2 might offer temporal specificity for the 
inflammatory process. Although both COX1 and COX2 
are inhibited by nonsteroidal antiinflammatory drugs, 
accumulating evidence suggests that, in the CNS, COX1 
has more proinflammatory functions than does COX2; 
thus, selective COX1 inhibition might be a better strategy 
for drug development than selective inhibition of COX2.74 
In addition, whereas COX1 is predominantly expressed 
by microglia, COX2 is also expressed by neurons.75

Unfortunately, developing COX1 and COX2 PET 
radioligands has proven challenging. Studies using [¹¹C]
ketoprofen methyl ester, which targets COX1 and was 
studied in rodents and humans,76 were confounded by 
quantitation issues of the radiolabelled prodrugs, and 
brain binding was not significantly different between 
individuals with Alzheimer’s disease and healthy 
controls.77 Furthermore, most candidate molecules for 
COX2 radiotracers have been studied only in rodent 
models of inflammation and nonhuman primates 
without successful extension to humans.78,79

Two highaffinity, selective radioligands, [¹¹C]PS13 
for COX1 and [¹¹C]MC1 for COX2, were recently 
developed.80–82 Studies in healthy rhesus monkeys found 
COX1 binding in several major organs, including the 
brain, whereas COX2 binding was minimal.83 In healthy 
human volunteers, [¹¹C]PS13 binding was much higher 
in the bilateral hippocampus, occipital cortex, and 
sensorimotor cortex than in other brain regions, 
suggesting a topographic distribution of physiological 
COX1 expression (figure 3).84 This finding is consistent 
with reported COX1 mRNA expression in six healthy 
donor brains.85 Although [¹¹C]MC1 showed little baseline 
signal in rhesus monkey brain and periphery, binding 
of this radioligand was increased after lipopo
lysaccharide injection, showing that [¹¹C]MC1 can 
measure inflammationinduced increases in COX2 
expression (figure 4).6 In agreement with these preclinical 
findings, [¹¹C]MC1 binding increased in the affected 
joints of participants with rheumatoid arthritis. Taken 
together, the findings suggest that, although [¹¹C]MC1 
might have application in traditional inflammatory 
diseases, the ability of [¹¹C]PS13 to measure basal COX1 
expression could make this radioligand more useful in 
psychiatric diseases.

CSF1R
CSF1R is a subfamily of tyrosine kinase receptors 
activated by two ligands, CSF1 and IL34.86 This receptor 

directly controls the activation and survival of macro
phages and macrophagelike cells and hence plays a 
pivotal role in the inflammatory response. Therapeutic 
use of CSF1R inhibitors has been attempted in various 
autoimmune disorders and cancers; pexidartinib, an 
orally administered CSF1R inhibitor, was approved for 
treatment of tenosynovial giant cell tumour by the US 
Food and Drug Administration, and several phase 1 or 2 
clinical trials with CSF1R inhibitors have been done in 
rheumatoid arthritis.87,88 Furthermore, because studies in 
the healthy brain suggest that CSF1R is expressed 
exclusively in microglia,89 this receptor is a promising 
target for developing neuro inflammatory PET imaging 
biomarkers specific to this cell type. Once developed, 
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Figure 5: CSF1R PET images in a baboon
Parametric VT images of [¹¹C]CPPC PET in baboon in baseline, lipopolysaccharide, and lipopolysaccharide-plus-block 
experiments. The lipopolysaccharide dose was 0·05 mg/kg (intravenously), given 4 h before radiotracer injection. 
Lipopolysaccharide treatment increased VT of [¹¹C]CPPC, whereas lipopolysaccharide-plus-block treatment reduced 
VT to baseline levels. Adapted from Horti et al.7 CSF1R= colony stimulating factor 1 receptor. LPS=lipopolysaccharide. 
VT=distribution volume.
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such biomarkers could be used to assess the target 
engagement of candidate CSF1R inhibitors in clinical 
trials for CNS disorders marked by neuroinflammation. 
[¹¹C]CPPC, a new radioligand targe ting CSF1R, has 
shown substantial specific binding in lipopolysaccharide
induced neuroinflammation models of rodent and non
human primate brains, as well as in postmortem human 
brain studies of individuals with Alzheimer’s disease 
(figure 5).7

One major caveat of [¹¹C]CPPC for CSF1R is that the 
radioligand has inadequate sensitivity to detect the fairly 
low density of the targets in healthy animal brain and can 
detect the target only after an inflammatory challenge 
with lipopolysaccharide.7 Another caveat is that CSF1R is 
expressed in peripheral macrophages, which, in theory, 
might contribute to greater brain binding under some 
conditions.90 In addition, although studies in animals are 
promising, no CSF1R ligand has yet been validated in 
living humans.

P2X7R
P2X7R is expressed in the brain primarily by microglia but 
also by oligodendrocytes and astrocytes.7 P2X7R activation 
results in inflammatory cytokine release, whereas P2X7R 
antagonism might be neuroprotective.91,92 P2X7R is 
upregulated in mouse models of Alzheimer’s disease,93,94 
in microglia derived from brains of patients with 
Alzheimer’s disease,95 and in fetal human microglia treated 
with amyloid β.95 A knockout mouse study showed that 
P2X7R is necessary for amyloidβ activation of microglia.96 
Although additional tracers have been studied preclinically, 
only [¹¹C]JNJ54173717 (JNJ717), [¹⁸F]JNJ64413739, and 
[¹¹C]SMW139 have been used in human studies.8,97–100 One 
study found that [¹⁸F]JNJ64413739 binding was increased 
by intracerebral injection of lipopoly saccharide in rats101 
and, further, that this ligand had favourable kinetics in 
human controls with good test–retest variability.102 
However, preclinical studies suggest a considerable degree 
of nondisplaceable binding.103 In the first application of 
JNJ717 in vivo in disease, no difference was seen in 
radioligand binding between 11 controls and ten 
individuals with Parkinson’s disease.104 Similarly, JNJ717 
binding was not increased on auto radiography or PET in 
individuals with amyotrophic lateral sclerosis,105 despite 

increased TSPO binding with [¹⁸F]DPA714 in vitro and in 
vivo. Another challenge with JNJ717 is that considerable 
variability is observed with regard to P2X7R binding in 
humans.102,104 How ever, the rs3751143 poly morphism on the 
P2X7R gene is associated with some of this variation in 
receptor binding, so incorporating this genotype as a 
covariate into betweengroup comparisons could be 
considered in future studies.104 Finally, in the only human 
study using [¹¹C]SMW139, increases in VT were observed 
in five individuals with multiple sclerosis compared with 
five controls;8 additional studies are warranted to evaluate 
the use of this radioligand.

Conclusion
PET studies of neuroinflammation in neurological 
disorders have the advantage that distinct disease sub types 
can be identified by neuropathology and sometimes by 
genetic causality (eg, Alzheimer’s disease, sporadic fronto
temporal dementia, progranulincaused front otemporal 
dementia). By contrast, psychiatric disorders are more 
heterogeneous, have no consistent neuropathology, and 
yield wider variability of most biomarkers, including PET 
measurements of neuroinflammation.

Despite these limitations, PET imaging of neuro
inflammation in some psychiatric disorders has provided 
surprisingly consistent results that could have treatment 
implications. Arguably the best case is major depressive 
disorder, for which six of seven studies found elevated 
TSPO in unmedicated individuals experiencing an MDE. 
In addition, a study found that elevated TSPO at baseline 
predicted treatment response to celecoxib, a selective 
COX2 inhibitor.1 In schizophrenia and psychosis, lower 
TSPO has been observed in patients than in controls 
despite evidence of increased proinflammatory activation 
peripherally and centrally.106,107 This could reflect the fact 
that some mechanisms of inflammation will not be 
detected by TSPO imaging, underscoring the use of 
applying multiple markers. The effect size of TSPO in 
individuals with psychosis was just less than 0·5, 
whereas the effect size in major depressive disorder was 
twice that. As a result, significant decreases were evident 
in only one of seven schizophrenia or psychosis studies; 
aggregating data across studies was required to show 
significant decreases (p<0·005).47 The implication is 
clear: large sample sizes are advan tageous and, for 
complex techniques like PET, require standardisation to 
be meaningfully combined.108 The field first needs to 
identify a consistent pattern so that the clinical effect, if 
any, can be explored and so that future studies can be 
planned as appropriate.

Several promising radioligands that target aspects of 
neuroinflammation have been tested in animal models 
of neuroinflammation and some have been extended to 
humans. We anticipate that these newly developed 
radioligands will soon be used to explore the potential 
role of neuroinflammation in psychiatric disorders and 
aid in the development of new therapeutic approaches.

Search strategy and selection criteria

We searched PubMed for papers published between 
Jan 1, 2005, and Feb 29, 2020, with combinations of the 
following search terms: “PET”, “TSPO”, “translocator protein”, 
“peripheral benzodiazepine receptor”, “inflammation PET”, 
“microglia PET”, “depression”, “schizophrenia”, “psychosis”, 
“substance use”, “obsessive-compulsive disorder”, “MAO-B”, 
“cyclooxygenase”, “COX”, “CSF1R”, and “P2X7R”. We applied 
no language restrictions. We generated the final reference list 
on the basis of relevance to the topics covered in this Review.
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